Confidence intervals, sampling distributions, and standard errors
Overview

Review: confidence intervals and sampling distributions

The bootstrap
Review of confidence intervals and sampling distributions

Question$_0$: Who is this?
 • Socrates!
Confidence Intervals

Q₁: What is a confidence interval?
 • A₁: a confidence interval is an interval computed by a method that will contain the parameter a specified percent of times

Q₂: What is the confidence level?
 • A₂: The confidence level is the percent of all intervals that contain the parameter
Q₃: For a confidence level of 90%, how many of these intervals should have the parameter in them?
 • A: 90%

Q₄: For a given confidence interval, do we know if it contains the parameter?
 • A: No! 😞
Q5: For the cartoon below, what is the confidence level the weatherman is using?

- A: 100%

There is a **tradeoff** between the **confidence level** (percent of times we capture the parameter) and the **confidence interval size**.
Example

130 observations of body temperature of men were made

A 95% confidence interval for the body temperatures is:
[98.123, 98.375]

How do we interpret these results?

Is this what you would expect?
Confident intervals

Q_6: Are we feeling confident about confidence intervals?
Q₇: What is a sampling distribution?
 • A: A **sampling distribution** is the distribution of sample statistics computed for different samples of the same size (n) from the same population

Q₈: What does a sampling distribution show us?
 • A: A sampling distribution shows us how the sample statistic varies from sample to sample
Art time

Draw:

• Population
• 1 sample that has 100 points
• 9 more samples that have 100 points
• A sampling distribution
• Plato
• Population parameter with appropriate symbol
• Sample statistic with appropriate symbol
Gettysburg address word length sampling distribution

 Sampling distribution!

\[\mu \]

\[
\begin{align*}
\bar{x} = 5 & \quad 10, 3, 3, 3, 4, \\
\bar{x} = 4.3 & \quad 3, 2, 6, 10, 5 \\
\bar{x} = 4.2 & \quad 2, 6, 2, 6, 6, \\
& \quad 2, 5, 3, 2, 9 \\
& \quad 3, 9, 3, 4, 4, \\
& \quad 3, 6, 6, 2, 2
\end{align*}
\]
The standard error

Q₉: What is the **standard error**?
 • The **standard error** of a statistic is the standard deviation of the sample statistic

Q₁₀: What symbol do we use to denote the standard error?
 • SE
Q_{11}: If we could easily sample infinitely many times from our population, how could we calculate the SE of the mean using R?

```r
sampling_distribution_vec <- NULL

for (i in 1:100000) {
    curr_sample <- sample(population_vector, 10)
    sampling_distribution_vec[i] <- mean(curr_sample)
}

SE_mean <- sd(sampling_distribution_vec)
```
The standard error

Q₁₂: What does the size of the standard error tell us?
- A: It tell us how much statistics vary from each other

Q₁₃: What would be mean if there is a large SE?
- A large SE means our statistic (point estimate) could be far from the parameter
- E.g., \(\bar{x} \) could be far from \(\mu \)
Q_{14}: How does the sampling distribution change with larger sample size n?
A: As the sample size n increases
 • 1. The sampling distribution becomes more like a normal distribution
 • 2. The sampling distribution statistics become more concentrated around population parameter

Sampling distribution \((n = 5)\) vs. \((n = 20)\)

- x-axis range 9 vs. 6
Shapes of sampling distributions

Q_{15a}: What is a commonly seen shape for sampling distributions?
A: Normal!
Normal distributions

Q_{15}: For a normal distribution, what percentage of points lie within 2 standard deviations for the population mean?

A: 95%
Q₁₆: For a sampling distribution that is a normal distribution, what percentage of statistics lie within 2 standard deviations (SE) for the population mean?
A: 95%

Q₁₇: If we had a statistics value and the value of the SE could we compute a 95% confidence interval?
A: Yes! (assuming the sampling distribution is normal, which it often is)
Q₁₈: Could we repeat the sampling process many times to create a sampling distribution and then calculate the SE?

• A: Not in the real world because it would require running our experiment over and over again...
Q_{19}: If we can’t calculate the sampling distribution, what’s else could we do?

• A: We could pick ourselves up from the bootstraps

1. Estimate SE with \(\hat{SE} \)
2. Then use \(\bar{x} \pm 2 \cdot \hat{SE} \) to get the 95% CI
Plug-in principle

Suppose we get a sample from a population of size n

We pretend that this sample is the population (plug-in principle)

1. We then sample n points \textit{with replacement} from our sample, and compute our statistic of interest

2. We repeat this process 1000’s of times and get a \textit{bootstrap} sample distribution

3. The standard deviation of this bootstrap distribution (SE* bootstrap) is a good approximate for standard error SE from the real sampling distribution
Bootstrap process

Diagram showing the process of bootstrapping.
95% Confidence Intervals

When a bootstrap distribution for a sample statistic is approximately normal, we can estimate a 95% confidence interval using:

$$\text{Statistic} \pm 2 \cdot SE^*$$

Where SE^* is the standard error estimated using the bootstrap.
Worksheet 6

Due midnight on Sunday Oct 21st

source('/home/shared/intro_stats/cs206_functions.R')
> get_worksheet(6)